
Introduction to python

Introduction and Concepts

• Why Python ?
– Very simple syntax with clean semantics
– Free and used extensively
– Interpreted, quick development and debug
– Virtually every area of computer science
– Easily extensible in C or C++ and other languages

(FORTRAN TOO!)
– Object Oriented (but no need to know about it)

Python Editors – Idle (1)

• IDLE is the new Python development environment which was first released
with version 1.5.2 of Python

• Its name is an acronym of "Integrated DeveLopment Environment".
• It is being developed by Guido van Rossum with contributions from others
• It has a Python Shell Window, which gives you access to the Python

interactive mode
• Its File Editor lets you create new or browse through and edit existing Python

source files (color coded).
• There is a Path Browser for searching through the path of available module

source files as well as a simple Class Browser for finding the methods of
classes.

• It has a flexible search capability through its Find in Files dialog that lets you
search through your files and/or the systems' files to find occurrences of
identifiers or any other text fragments.

• Finally (although this is still is in the process of maturing), it has a Debug
Control Panel which provides for the symbolic debugging of Python
programs�����

Python Editors – Idle (2)

Python Editors - Emacs

EMACS has a Python mode which you
can obtain from http://www.python.org

I recommend to save file and run it from
command line, it’s faster:

python -i myfile.py

;; Red Hat Linux default .emacs initialization file ; -*- mode: emacs-lisp -*-

;; Set up the keyboard so the delete key on both the regular keyboard
;; and the keypad delete the character under the cursor and to the right
;; under X, instead of the default, backspace behavior.
(global-set-key [delete] 'delete-char)
(global-set-key [kp-delete] 'delete-char)

;; turn on font-lock mode
(global-font-lock-mode t)
;; enable visual feedback on selections
(setq-default transient-mark-mode t)

;; always end a file with a newline
(setq require-final-newline t)

;; stop at the end of the file, not just add lines
(setq next-line-add-newlines nil)

(when window-system
;; enable wheelmouse support by default
(mwheel-install)
;; use extended compound-text coding for X clipboard
(set-selection-coding-system 'compound-text-with-extensions))

;; Charles' addition, goto (F5) and save (F6)
(global-set-key [f5] 'goto-line)
(global-set-key [f6] 'save-buffer)
(global-set-key [f1] 'advertised-undo)
(global-set-key [f2] 'query-replace-regexp)

;;; Trying to set the postscript printer.....
(setq ps-printer-name "xeroxcolor")
;;(setq ps-printer-name "hpcolor")
(setq load-path (cons "~/emacs/" load-path))
(autoload 'python-mode "python-mode" "Python editing mode." t)
(setq auto-mode-alist

(cons '("\\.py$" . python-mode)
auto-mode-alist))

(setq interpreter-mode-alist
(cons '("python" . python-mode)
interpreter-mode-alist))

(custom-set-variables
;; custom-set-variables was added by Custom -- don't edit or cut/paste it!
;; Your init file should contain only one such instance.
'(case-fold-search t)
'(current-language-environment "UTF-8")
'(default-input-method "rfc1345")
'(global-font-lock-mode t nil (font-lock))
'(show-paren-mode t nil (paren))
'(transient-mark-mode t))

(custom-set-faces
;; custom-set-faces was added by Custom -- don't edit or cut/paste it!
;; Your init file should contain only one such instance.
)

;; Red Hat Linux default .emacs initialization file ; -*- mode: emacs-lisp -*-

;; Set up the keyboard so the delete key on both the regular keyboard
;; and the keypad delete the character under the cursor and to the right
;; under X, instead of the default, backspace behavior.
(global-set-key [delete] 'delete-char)
(global-set-key [kp-delete] 'delete-char)

;; turn on font-lock mode
(global-font-lock-mode t)
;; enable visual feedback on selections
(setq-default transient-mark-mode t)

;; always end a file with a newline
(setq require-final-newline t)

;; stop at the end of the file, not just add lines
(setq next-line-add-newlines nil)

(when window-system
;; enable wheelmouse support by default
(mwheel-install)
;; use extended compound-text coding for X clipboard
(set-selection-coding-system 'compound-text-with-extensions))

;; Charles' addition, goto (F5) and save (F6)
(global-set-key [f5] 'goto-line)
(global-set-key [f6] 'save-buffer)
(global-set-key [f1] 'advertised-undo)
(global-set-key [f2] 'query-replace-regexp)

;;; Trying to set the postscript printer.....
(setq ps-printer-name "xeroxcolor")
;;(setq ps-printer-name "hpcolor")
(setq load-path (cons "~/emacs/" load-path))
(autoload 'python-mode "python-mode" "Python editing mode." t)
(setq auto-mode-alist

(cons '("\\.py$" . python-mode)
auto-mode-alist))

(setq interpreter-mode-alist
(cons '("python" . python-mode)
interpreter-mode-alist))

(custom-set-variables
;; custom-set-variables was added by Custom -- don't edit or cut/paste it!
;; Your init file should contain only one such instance.
'(case-fold-search t)
'(current-language-environment "UTF-8")
'(default-input-method "rfc1345")
'(global-font-lock-mode t nil (font-lock))
'(show-paren-mode t nil (paren))
'(transient-mark-mode t))

(custom-set-faces
;; custom-set-faces was added by Custom -- don't edit or cut/paste it!
;; Your init file should contain only one such instance.
)

http://www.python.org/

KDevelop
SPE

VI/VIM
Simple works everywhere

Editors - and many more

Before we start: remember “dir()” and “help()”

• Whenever you are using Python interactively and you
get stuck, try:
– dir(<something>) OR help(<something>)

• For example:
>>> help(open)
Help on class file in module __builtin__:

class file(object)
| file(name[, mode[, buffering]]) -> file object
|

| Open a file. The mode can be 'r', 'w' or 'a' for
reading (default),

Really remember “dir()” and “help()”

>>> dir("somestring")
['__add__', '__class__', '__contains__',
'__delattr__', '__doc__', '__eq__', '__ge__',
'__getattribute__', '__getitem__',
'__getnewargs__', '__getslice__', '__gt__',
'__hash__', '__init__', '__le__', '__len__',
'__lt__', '__mod__', '__mul__','__ne__',
'__new__', '__reduce__', '__reduce_ex__',
'__repr__', '__rmod__', '__rmul__',
'__setattr__', '__str__', 'capitalize',
'center', 'count', 'decode', 'encode',
'endswith', 'expandtabs', 'find', 'index',
'isalnum', 'isalpha', 'isdigit','islower',
'isspace', 'istitle', 'isupper', 'join',
'ljust', 'lower', 'lstrip', 'replace', 'rfind',
'rindex', 'rjust', 'rstrip', 'split',
'splitlines', 'startswith', 'strip',
'swapcase', 'title', 'translate', 'upper',
'zfill']

• This will make more sense later!

Python Types

• None : represent “nothing” (NULL)
• Numbers No int or float, only long and double
• List: []

– Ordered list of elements, which can be changed
• Tuples: ()

– Ordered list of elements, which cannot be altered
• Dictionaries { }

– Unordered list of keys/values
• String "", ‘ ‘ or """ """

– Character strings
• Files
• Functions : def

– User defined function
• Class: class

– User defined “object” contains attributes and functions

Number Types

• Numbers are always “double precision” in python, i.e., although
they are called “int” and “float” integers are always really “long”
and real are always “double”.

• There’s also a complex number type:
A=complex(4,5)
Print A # (4+5j)

• Attention to casting:
– While different casting will be cast “safely”

3.+5 is 8.0
3+5. is 8.0

– Same “kind” casting will stay in the same kind
3+5 is 8
3/5 is 0

– Again, different kind casting will work:
3/5. Is 0.59999999998
3./5 is 0.59999999998
float(3)/5 is 0.59999999998

Types: List 1

• List: [] , list are
– succession of object:
L= [1,2,3,4,7,6]; L2=[L,2,3,4]
print L2 # [[1, 2, 3, 4, 7, 6], 2, 3, 4]

– Elements start at zero: print L[0] # 1
– Elements are changeable:
L[0]=6 ; print L # [6,2,3,4,7,6]

– Sortable: L.sort(); print L # [2,3,4,6,6,7]

• Accessing elements:
– By index, negative values allowed: L[0] is 2, L[-1] is

7, L[1] is 3 L[-4] is 4

– By value (I.e. returning the index of a value)
A=L.index(4) # returns 6

– By slice: L[2:5], L[:-2] , L[2:], L[2:-2]

Types: List 2

• Adding elements:
L.append(3.5) # L is [2,3,4,6,6,7,3.5]
L.insert(2,4.5) # L is [2,3,4.5,4,6,6,7,3.5] # first

argument is element before which to insert

• Removing elements
del(L[3]) # L is [2,3,4.5,6,6,7,3.5]
A=L.pop(-1); print A # returns 3.5 for A and L is

[2,3,4.5,6,6,7]

• Other functions:
L.reverse() # inverse the elements order
L.count(6) # returns 2 because 6 appears twice
len(L) # returns 6 because L has 6 elements

Types: Tuple

• Tuples: () , tuples are
– Ordered succession of object:
T= (1,2,3,4,7,6); T2=(T,2,3,4]);
print T2 # ((1, 2, 3, 4, 7, 6), 2, 3, 4)
– Elements start at zero: print T[0] # 1
– Elements are NOT changeable:
T[0]=6 # Raises an exception
– Sortable: T.sort(); print T # [2,3,4,6,6,7]

• Adding elements: Impossible
• Removing elements: Impossible

• Accessing elements:
– By index, negative values allowed:
T[0] is 2 T[-1] is 7, T[1] is 3 T[-4] is 4.5

• Other functions:
len(T) # returns 6 because T has 6 elements

Types: Dictionary 1

• Dictionaries: {}, dictionaries are
– Unordered pairs of key/value:

• Keys can be any python object except list, tuple or dictionaries
• Values can be any python object
D={1:’one’, ‘two’:2, ‘list’:[1,2]}

– Elements are changeable D[1]=‘One’

• Adding elements:
D[‘three’]=3.0

• Removing elements
del(D[1])
A=D.poo(‘three’) # A is now 3. And D does not

contain ‘three’ key anymore

Types: Dictionary 2

• Accessing elements:
print D[‘two’] # return 2

A=d.get(‘three’,3.) # Returns the value associated with
‘three’ if present, if not returns 3., second arg is optional,
raise an exception if key doesn’t exist

A.setdefault(‘three’,3.) # Same as above but also adds
the ‘three’ key if doesn’t exist

• Other functions:
D.keys() # returns a list of the keys
D.values() # return a list of the contains values
D.clear() remove all pairs key/value
D.has_key() # returns 1 if key exist

Types: String (1)
• String are the main reason Python is so adapted to our field, it is

VERY easy to manipulate here’s a list of key function for strings
• Manipulating strings:

S=“ Welcome \n My name is Charles. We are in
a Python Class”

A=‘Hi’ ; B=‘there’ ; C=A+B ; D=A+’ ‘+B # ‘C is
‘Hithere’, D is “Hi there”

I=s.find(‘Charles’) # returns location of first occurrence
of ‘Charles’ ; -1 if not present

S2=S.replace(‘Charles’, ‘Charles Doutriaux’)
S2=S.strip() # removes leading and ending blanks
L=S.split() # returns a list of strings separation happen

after every “space” or end of line (“\n”)

Types: String (2)

L=S.split(‘.’) # same but splits only when finding ‘.’ string
L=S.split(‘Charles’) # same but splits when finding ‘Charles’

string
S2=S.lower() # everything becomes lower case (also S.upper()

and S.swapcase())
• Most function are accessible from the string module but

requires then to have S passed as first arg:
S2=string.lower(S)
I=string.find(S,’Charles’)

• Special Characters:
– ‘\n’ : line break
– ‘\t’ : tab
– ‘\’’ : single quote when within single quote : S= ‘ Hi I\’m going

home’
– “\”” : a double quote when between double quotes

Types: String : Input/Conversion

• Converting strings is easy
S=‘2.3’; f=float(S)
S=‘2.3’; I=int(s)

• Reading string from user:
User_name=raw_input(‘Enter your name:’)

• Reading result from command line
root=‘/home/doutriau/’
cmd=‘ls ‘+root

files=os.popen(cmd).readlines()
for file in files:

file_name=file.strip() # removes trailing
line carriage character
print file_name

Files

• In Python, files are “objects”. To open an existing file:
f=open(‘file.txt’)

• To open an existing file with possibility to write to it
f=open(‘file.txt’,’r+’)

• To open a new file
f=open(‘file.txt’,’w’)

• To read a file:
lines=f.readlines() # lines is a list of string, each string ending

up with the carriage return character (‘\n’)
• To write to a file:

f.writelines(lines) # lines being a list a strings
Or
f.write(‘hi\n’)

Or directly with the print statement
print >>f, ‘Hi’

Types: Final note

• To determine the type of a python object:
print type([2,3,4]) # <type 'list'>
a= [2,3,4] ; if type(a) == type([]):

print ‘It is a list’

• You can also use the types module
import types
print dir(types.type)
if type(a) == types.ListType:
print ‘it is a list’

if type(A) in [types.ListType, types.TupleType]:
print ‘a is a list or a tuple’

• Or use the “pure” object oriented method:
if isinstance(a,list):
print ‘it is a list’
if isinstance(a,(list,tuple)):
print ‘a is a list or a tuple’

– This allows to check for object of type you created (non standard
python objects)

Conditions

• Operators
equal: == , not equal: != , greater: > , less <
, greater_equal: >= , less_equal: <=

in: in (if a in [1,2,3,4]:)

• Mixing: and, or, not

• Test and condition block are determined by a
SEMI-COLON (:) and then every line having the
same INDENTATION

if/elif/else

if a>b:
print ‘a greater than b’

elif a<b:
print ‘b greater than a’

else:
print ‘a and b are equal’

Loops: For 1

• “for” is used to loop through elements of a
list/tuple and assign the values from the list
to a variable that is used inside a block which
is repeated until all the elements of the list
have been used.

• Again a semi-colon and an indented block
will determine the extent of the code to be
executed:

for a in [‘a’,1,’2’,[4,5,6]]:
print a

print ‘Done’

Loops: For 2

• To do the “traditional” loop over 10 numbers,
create a list using the “range” command:

range(6) # returns [0,1,2,3,4,5]
range(2,6) # returns [2,3,4,5]
range(3,8,3) # returns [3,6]
range(8,3,-1) # returns [8,7,6,5,4]
range(8,3,-3) # returns [8,5]

for I in range(10):
print I,’*’,5,’=‘,I*5

• As much as possible DO NOT nest loops, it is
EXTREMELY inefficient.

Loops: While/Else

• “while” is used to repeat a block as long as a condition is
fulfilled, again a semi-colon and an indented block will
determine the extent of the executed block. The else statement
is executed after the condition is not true anymore:

a=11
while a>0:

a=a-1
print a

print ‘Done’

• To the “traditional” loop over 10 numbers, initialize a “counter” to
a value, and check for its value, keep increasing it every time:

c=0
while c<10:
print c,’*’,5,’=‘,c*5

c=c+1
else: # executed once the loop is exited

print ‘done with this’
print ‘All Done!’

Blocks: Try/Except/Else

• “try/except” is used to catch errors, allowing you to decide how
to respond to different errors. Again a semi-colon and an
indented block will determine the extent of the loop:

mylist=[1,2,3,-4,0]
b=5.
for c in mylist:

try:
b=a/c

except:
print ‘Impossible to divide by ‘,b

else:
print ‘No matter what, we come here’

Functions (1)

• Functions are “defined” using the “def” keywords followed with
“:” and indentation will define the extent of the function:

>>> def my_print_add_func(a,b):
... print a,’+’,b,’=‘,a+b
>>> print my_print_add_func(3,4)

• Arguments can be passed “out of order” using their keyword
name:

>>> print my_print_add_func(b=4,a=3)

Functions (2)

• Arguments can be defined with default values, which allows
user to not pass these:

>>> def my_print_add_func(a,b=4):
... print a,’+’,b,’=‘,a+b
>>> my_print_add_func(3)
>>> my_print_add_func(3,6)

• Functions can return objects:
>>> def my_print_add_func(a,b):
... return a+b
>>> c=my_print_add_func(a,b)

Functions (3)

• Unlimited number of arguments can be accepted via “*”
identifier:

>>> def my_add_func(*args):
args is a list of all args passed in

... tot=0

... for a in args:

... tot=tot+a

... return tot
>>> print my_add_func(1,2,3,4,5,6)

Functions (4)

• Unlimited number of “keyword arguments” can be accepted via the
“**” identifier:

>>> def my_add_func(**kw):
... # kw: dictionary containing pairs
... # (keyword:value)
... for v in kw.values():
... tot=tot+v
... return tot
>>> print my_add_func(a=5,b=6)

Classes

• Python allows Object-oriented programming. Classes define
python objects, from which instances are created.

• Resulting objects have functions and attributes associated with
them.

• Classes define the “blueprint” of these object and have an
initialization function:

class TwoNumberOperators:
def __init__(self,one=3,two=4): # class methods are like functions

self refers to the object that will be created
self.one=one
self.two=two

def add(self):
return self.one+self.two

def sub(self):
return self.one-self.two

T1= TwoNumberOperators(one=6,two=5)
print T1.one,T1.two
print T1.add()

Modules

• Modules allows you to store function for use at a
later time.

• Modules are named with the “.py” extension:
<yourfile.py>

• import other modules (or packages (i.e. groups of
modules)) as follows:

import yourfile
from yourfile import yourFunction

• Access objects in the module namespace:
x=yourfile.yourFunction()
c=yourfile.myClass(some_argument)
s=yourfile.astring

Modules vs scripts

• In pythonspeak, there are two types of file:

1. A script (or a file) contains statements and can
be executed directly from the command-line (or
from an icon in a Windows world).

2. A module should only contain definitions of
functions, variables and and class constructors.

NOTE 1: A script can also contain definitions like a
module.

Debugger - IDLE

• Python’s editor, IDLE comes with a debugger
– From the shell window check debugger and then run a

loaded file (F5)

Debugger - Pydebug

• CDAT comes with a debugger “pydebug”
– It sits in your bin directory, and you can use it as follow:
pydebug python_file

Appendix for session:
Introduction to python 1

Functions – built-ins

• There is a number of “built-in” functions in Python, a complete
list is available at: http://www.python.org/doc/lib/built-in-
funcs.html.

• Examples are:
help([object]) - Invoke the built-in help system. (This function is intended

for interactive use.) If no argument is given, the interactive help system
starts on the interpreter console. If the argument is a string, then the string
is looked up as the name of a module, function, class, method, keyword, or
documentation topic, and a help page is printed on the console. If the
argument is any other kind of object, a help page on the object is
generated. New in version 2.2.

str([object]) - Return a string containing a nicely printable representation
of an object. For strings, this returns the string itself. The difference with
repr(object) is that str(object) does not always attempt to return a string
that is acceptable to eval(); its goal is to return a printable string. If no
argument is given, returns the empty string, “”.

http://www.python.org/doc/lib/built-in-funcs.html
http://www.python.org/doc/lib/built-in-funcs.html
http://www.python.org/doc/lib/built-in-funcs.html

Functions – built-ins

• There is a number of “built-in” functions in Python, a complete
list is available at: http://www.python.org/doc/lib/built-in-
funcs.html

• abs(x) Return the absolute value of a number. The argument may be a plain or
long integer or a floating point number. If the argument is a complex number, its
magnitude is returned.

• chr(i) Return a string of one character whose ASCII code is the integer i. For
example, chr(97) returns the string 'a'. This is the inverse of ord(). The
argument must be in the range [0..255], inclusive; ValueErrorwill be raised if i
is outside that range.

• �delattr(object, name) This is a relative of setattr(). The arguments are an
object and a string. The string must be the name of one of the object's
attributes. The function deletes the named attribute, provided the object allows
it. For example, delattr(x, 'foobar') is equivalent to del x.foobar.

http://www.python.org/doc/lib/built-in-funcs.html
http://www.python.org/doc/lib/built-in-funcs.html

Functions – built-ins

• dir([object]) Without arguments, return the list of names in the current local
symbol table. With an argument, attempts to return a list of valid attributes for
that object. This information is gleaned from the object's __dict__ attribute, if
defined, and from the class or type object. The list is not necessarily complete.
If the object is a module object, the list contains the names of the module's
attributes. If the object is a type or class object, the list contains the names of
its attributes, and recursively of the attributes of its bases. Otherwise, the list
contains the object's attributes' names, the names of its class's attributes, and
recursively of the attributes of its class's base classes. The resulting list is
sorted alphabetically. For example:
>>> import struct

>>> dir()

['__builtins__', '__doc__', '__name__', 'struct']

>>> dir(struct)

['__doc__', '__name__', 'calcsize', 'error', 'pack', 'unpack']

Note: Because dir() is supplied primarily as a convenience for use at an interactive
prompt, it tries to supply an interesting set of names more than it tries to supply
a rigorously or consistently defined set of names, and its detailed behavior may
change across releases.

Functions – built-ins

• dir([object]) Without arguments, return the list of names in the current local
symbol table. With an argument, attempts to return a list of valid attributes for
that object. This information is gleaned from the object's __dict__ attribute, if
defined, and from the class or type object. The list is not necessarily complete.
If the object is a module object, the list contains the names of the module's
attributes. If the object is a type or class object, the list contains the names of
its attributes, and recursively of the attributes of its bases. Otherwise, the list
contains the object's attributes' names, the names of its class's attributes, and
recursively of the attributes of its class's base classes. The resulting list is
sorted alphabetically. For example:

>>> import struct>>> dir()['__builtins__', '__doc__', '__name__', 'struct']
>>> dir(struct)['__doc__', '__name__', 'calcsize', 'error', 'pack', 'unpack']
Note: Because dir() is supplied primarily as a convenience for use at an

interactive prompt, it tries to supply an interesting set of names more than it
tries to supply a rigorously or consistently defined set of names, and its
detailed behavior may change across releases.

Functions – built-ins

• divmod(a, b) Take two (non complex) numbers as arguments and return a pair
of numbers consisting of their quotient and remainder when using long division.
With mixed operand types, the rules for binary arithmetic operators apply. For
plain and long integers, the result is the same as (a / b, a % b). For floating
point numbers the result is (q, a % b), where q is usually math.floor(a / b) but
may be 1 less than that. In any case q * b + a % b is very close to a, if a % b is
non-zero it has the same sign as b, and 0 <= abs(a % b) < abs(b). Changed in
version 2.3: Using divmod() with complex numbers is deprecated.

Functions – built-ins

• eval(expression[, globals[, locals]]) The arguments are a string and two
optional dictionaries. The expression argument is parsed and
evaluated as a Python expression (technically speaking, a condition
list) using the globals and locals dictionaries as global and local name
space. If the globals dictionary is present and lacks '__builtins__', the
current globals are copied into globals before expression is parsed.
This means that expression normally has full access to the standard
__builtin__ module and restricted environments are propagated. If the
locals dictionary is omitted it defaults to the globals dictionary. If both
dictionaries are omitted, the expression is executed in the environment
where eval is called. The return value is the result of the evaluated
expression. Syntax errors are reported as exceptions. Example:

>>> x = 1
>>> print eval('x+1')
2
This function can also be used to execute arbitrary code objects (such as

those created by compile()). In this case pass a code object instead of a
string. The code object must have been compiled passing 'eval' as the kind
argument. Hints: dynamic execution of statements is supported by the exec
statement. Execution of statements from a file is supported by the execfile()
function. The globals() and locals() functions returns the current global and
local dictionary, respectively, which may be useful to pass around for use
by eval() or execfile().

http://www.python.org/doc/lib/module-builtin.html

Functions – built-ins

• execfile(filename[, globals[, locals]]) This function is similar to the exec
statement, but parses a file instead of a string. It is different from the
import statement in that it does not use the module administration -- it
reads the file unconditionally and does not create a new module.2.2
The arguments are a file name and two optional dictionaries. The file is
parsed and evaluated as a sequence of Python statements (similarly to
a module) using the globals and locals dictionaries as global and local
namespace. If the locals dictionary is omitted it defaults to the globals
dictionary. If both dictionaries are omitted, the expression is executed
in the environment where execfile() is called. The return value is
None.

Warning: The default locals act as described for function locals()
below: modifications to the default locals dictionary should not be
attempted. Pass an explicit locals dictionary if you need to see effects
of the code on locals after function execfile() returns. execfile() cannot
be used reliably to modify a function's locals.

http://www.python.org/doc/lib/built-in-funcs.html#foot387

Functions – built-ins

• float([x]) Convert a string or a number to floating point. If the argument is a
string, it must contain a possibly signed decimal or floating point number,
possibly embedded in whitespace; this behaves identical to string.atof(x).
Otherwise, the argument may be a plain or long integer or a floating point
number, and a floating point number with the same value (within Python's
floating point precision) is returned. If no argument is given, returns 0.0. Note:
When passing in a string, values for NaN and Infinity may be returned,
depending on the underlying C library. The specific set of strings accepted
which cause these values to be returned depends entirely on the C library and
is known to vary.

• getattr(object, name[, default]) Return the value of the named attributed of
object. name must be a string. If the string is the name of one of the object's
attributes, the result is the value of that attribute. For example, getattr(x,
'foobar') is equivalent to x.foobar. If the named attribute does not exist, default
is returned if provided, otherwise AttributeError is raised.

Functions – built-ins

• hasattr(object, name) The arguments are an object and a string. The
result is True if the string is the name of one of the object's attributes,
False if not. (This is implemented by calling getattr(object, name) and
seeing whether it raises an exception or not.)

• help([object]) Invoke the built-in help system. (This function is intended
for interactive use.) If no argument is given, the interactive help
system starts on the interpreter console. If the argument is a string,
then the string is looked up as the name of a module, function, class,
method, keyword, or documentation topic, and a help page is printed
on the console. If the argument is any other kind of object, a help page
on the object is generated. New in version 2.2.

Functions – built-ins

• input([prompt]) Equivalent to eval(raw_input(prompt)). Warning: This
function is not safe from user errors! It expects a valid Python
expression as input; if the input is not syntactically valid, a SyntaxError
will be raised. Other exceptions may be raised if there is an error
during evaluation. (On the other hand, sometimes this is exactly what
you need when writing a quick script for expert use.) If the readline
module was loaded, then input() will use it to provide elaborate line
editing and history features. Consider using the raw_input() function for
general input from users. int([x[, radix]]) Convert a string or number to
a plain integer. If the argument is a string, it must contain a possibly
signed decimal number representable as a Python integer, possibly
embedded in whitespace. The radix parameter gives the base for the
conversion and may be any integer in the range [2, 36], or zero. If radix
is zero, the proper radix is guessed based on the contents of string;
the interpretation is the same as for integer literals. If radix is specified
and x is not a string, TypeError is raised. Otherwise, the argument
may be a plain or long integer or a floating point number. Conversion
of floating point numbers to integers truncates (towards zero). If the
argument is outside the integer range a long object will be returned
instead. If no arguments are given, returns 0.

http://www.python.org/doc/lib/module-readline.html

Functions – built-ins

• isinstance(object, classinfo) Return true if the object argument is an
instance of the classinfo argument, or of a (direct or indirect) subclass
thereof. Also return true if classinfo is a type object and object is an
object of that type. If object is not a class instance or an object of the
given type, the function always returns false. If classinfo is neither a
class object nor a type object, it may be a tuple of class or type
objects, or may recursively contain other such tuples (other sequence
types are not accepted). If classinfo is not a class, type, or tuple of
classes, types, and such tuples, a TypeError exception is raised.
Changed in version 2.2: Support for a tuple of type information was
added.

Functions – built-ins

• len(s) Return the length (the number of items) of an object. The
argument may be a sequence (string, tuple or list) or a mapping
(dictionary).

• list([sequence]) Return a list whose items are the same and in the
same order as sequence's items. sequence may be either a
sequence, a container that supports iteration, or an iterator object. If
sequence is already a list, a copy is made and returned, similar to
sequence[:]. For instance, list('abc') returns ['a', 'b', 'c'] and list((1, 2,
3)) returns [1, 2, 3]. If no argument is given, returns a new empty list,
[].

• long([x[, radix]]) Convert a string or number to a long integer. If the
argument is a string, it must contain a possibly signed number of
arbitrary size, possibly embedded in whitespace; this behaves identical
to string.atol(x). The radix argument is interpreted in the same way as
for int(), and may only be given when x is a string. Otherwise, the
argument may be a plain or long integer or a floating point number,
and a long integer with the same value is returned. Conversion of
floating point numbers to integers truncates (towards zero). If no
arguments are given, returns 0L.

Functions – built-ins

• map(function, list, ...) Apply function to every item of list and return a
list of the results. If additional list arguments are passed, function must
take that many arguments and is applied to the items of all lists in
parallel; if a list is shorter than another it is assumed to be extended
with None items. If function is None, the identity function is assumed; if
there are multiple list arguments, map() returns a list consisting of
tuples containing the corresponding items from all lists (a kind of
transpose operation). The list arguments may be any kind of
sequence; the result is always a list.

• max(s[, args...]) With a single argument s, return the largest item of a
non-empty sequence (such as a string, tuple or list). With more than
one argument, return the largest of the arguments.

• min(s[, args...]) With a single argument s, return the smallest item of a
non-empty sequence (such as a string, tuple or list). With more than
one argument, return the smallest of the arguments.

Functions – built-ins

• open/file(filename[, mode[, bufsize]]) Return a new file object
(described in section�2.3.8, ``File Objects''). The first two arguments
are the same as for stdio's fopen(): filename is the file name to be
opened, mode indicates how the file is to be opened: 'r' for reading, 'w'
for writing (truncating an existing file), and 'a' opens it for appending
(which on some Unix systems means that all writes append to the end
of the file, regardless of the current seek position). Modes 'r+', 'w+' and
'a+' open the file for updating (note that 'w+' truncates the file). Append
'b' to the mode to open the file in binary mode, on systems that
differentiate between binary and text files (else it is ignored). If the file
cannot be opened, IOError is raised. In addition to the standard fopen()
values mode may be 'U' or 'rU'. If Python is built with universal newline
support (the default) the file is opened as a text file, but lines may be
terminated by any of '¥n', the Unix end-of-line convention, '¥r', the
Macintosh convention or '¥r¥n', the Windows convention.

http://www.python.org/doc/lib/bltin-file-objects.html#bltin-file-objects
http://www.python.org/doc/lib/bltin-file-objects.html

Functions – built-ins

• open/file (continued). All of these external representations are seen as '¥n'
by the Python program. If Python is built without universal newline support
mode 'U' is the same as normal text mode. Note that file objects so opened also
have an attribute called newlines which has a value of None (if no newlines
have yet been seen), '¥n', '¥r', '¥r¥n', or a tuple containing all the newline types
seen. If mode is omitted, it defaults to 'r'. When opening a binary file, you should
append 'b' to the mode value for improved portability. (It's useful even on
systems which don't treat binary and text files differently, where it serves as
documentation.) The optional bufsize argument specifies the file's desired buffer
size: 0 means unbuffered, 1 means line buffered, any other positive value
means use a buffer of (approximately) that size. A negative bufsize means to
use the system default, which is usually line buffered for tty devices and fully
buffered for other files. If omitted, the system default is used.2.3 The file()
constructor is new in Python 2.2. The previous spelling, open(), is retained for
compatibility, and is an alias for file().

http://www.python.org/doc/lib/built-in-funcs.html#foot1017

Functions – built-ins

• pow(x, y[, z]) Return x to the power y; if z is present, return x to the
power y, modulo z (computed more efficiently than pow(x, y) % z). The
arguments must have numeric types. With mixed operand types, the
coercion rules for binary arithmetic operators apply. For int and long int
operands, the result has the same type as the operands (after
coercion) unless the second argument is negative; in that case, all
arguments are converted to float and a float result is delivered. For
example, 10**2 returns 100, but 10**-2 returns 0.01. (This last feature
was added in Python 2.2. In Python 2.1 and before, if both arguments
were of integer types and the second argument was negative, an
exception was raised.) If the second argument is negative, the third
argument must be omitted. If z is present, x and y must be of integer
types, and y must be non-negative. (This restriction was added in
Python 2.2. In Python 2.1 and before, floating 3-argument pow()
returned platform-dependent results depending on floating-point
rounding accidents.)

Functions – built-ins

• range([start,] stop[, step]) This is a versatile function to create lists
containing arithmetic progressions. It is most often used in for loops.
The arguments must be plain integers. If the step argument is omitted,
it defaults to 1. If the start argument is omitted, it defaults to 0. The full
form returns a list of plain integers [start, start + step, start + 2 * step,
...]. If step is positive, the last element is the largest start + i * step less
than stop; if step is negative, the last element is the largest start + i *
step greater than stop. step must not be zero (or else ValueError is
raised). Example:
>>> range(10)
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> range(1, 11)
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
>>> range(0, 30, 5)
[0, 5, 10, 15, 20, 25]
>>> range(0, 10, 3)
[0, 3, 6, 9]
>>> range(0)
[]

Functions – built-ins

• raw_input([prompt]) If the prompt argument is present, it is written to
standard output without a trailing newline. The function then reads a
line from input, converts it to a string (stripping a trailing newline), and
returns that. When EOF is read, EOFError is raised. Example:
>>> s = raw_input('--> ')
--> Monty Python's Flying Circus
>>> s
"Monty Python's Flying Circus"
If the readline module was loaded, then raw_input() will use it to

provide elaborate line editing and history features.
• reduce(function, sequence[, initializer]) Apply function of two

arguments cumulatively to the items of sequence, from left to right, so
as to reduce the sequence to a single value. For example,
reduce(lambda x, y: x+y, [1, 2, 3, 4, 5]) calculates ((((1+2)+3)+4)+5).
The left argument, x, is the accumulated value and the right argument,
y, is the update value from the sequence. If the optional initializer is
present, it is placed before the items of the sequence in the
calculation, and serves as a default when the sequence is empty. If
initializer is not given and sequence contains only one item, the first
item is returned.

http://www.python.org/doc/lib/module-readline.html

Functions – built-ins

• reload(module) Re-parse and re-initialize an already imported module.
The argument must be a module object, so it must have been
successfully imported before. This is useful if you have edited the
module source file using an external editor and want to try out the new
version without leaving the Python interpreter. The return value is the
module object (the same as the module argument). There are a
number of caveats: If a module is syntactically correct but its
initialization fails, the first import statement for it does not bind its name
locally, but does store a (partially initialized) module object in
sys.modules. To reload the module you must first import it again (this
will bind the name to the partially initialized module object) before you
can reload() it. When a module is reloaded, its dictionary (containing
the module's global variables) is retained. Redefinitions of names will
override the old definitions, so this is generally not a problem. If the
new version of a module does not define a name that was defined by
the old version, the old definition remains.

Functions – built-ins

• reload (continued). This feature can be used to the module's
advantage if it maintains a global table or cache of objects -- with a try
statement it can test for the table's presence and skip its initialization if
desired. It is legal though generally not very useful to reload built-in or
dynamically loaded modules, except for sys, __main__ and
__builtin__. In many cases, however, extension modules are not
designed to be initialized more than once, and may fail in arbitrary
ways when reloaded. If a module imports objects from another module
using from ... import ..., calling reload() for the other module does not
redefine the objects imported from it -- one way around this is to re-
execute the from statement, another is to use import and qualified
names (module.name) instead. If a module instantiates instances of a
class, reloading the module that defines the class does not affect the
method definitions of the instances -- they continue to use the old class
definition. The same is true for derived classes.

http://www.python.org/doc/lib/module-sys.html
http://www.python.org/doc/lib/module-main.html
http://www.python.org/doc/lib/module-builtin.html

Functions – built-ins

• repr(object) Return a string containing a printable representation of an
object. This is the same value yielded by conversions (reverse quotes).
It is sometimes useful to be able to access this operation as an
ordinary function. For many types, this function makes an attempt to
return a string that would yield an object with the same value when
passed to eval().

• round(x[, n]) Return the floating point value x rounded to n digits after
the decimal point. If n is omitted, it defaults to zero. The result is a
floating point number. Values are rounded to the closest multiple of 10
to the power minus n; if two multiples are equally close, rounding is
done away from 0 (so. for example, round(0.5) is 1.0 and round(-0.5) is
-1.0).

Functions – built-ins

• setattr(object, name, value) This is the counterpart of getattr(). The arguments
are an object, a string and an arbitrary value. The string may name an existing
attribute or a new attribute. The function assigns the value to the attribute,
provided the object allows it. For example, setattr(x, 'foobar', 123) is equivalent
to x.foobar = 123.

• slice([start,] stop[, step]) Return a slice object representing the set of indices
specified by range(start, stop, step). The start and step arguments default to
None. Slice objects have read-only data attributes start, stop and step which
merely return the argument values (or their default). They have no other explicit
functionality; however they are used by Numerical Python and other third party
extensions. Slice objects are also generated when extended indexing syntax is
used. For example: "a[start:stop:step]" or "a[start:stop, i]".

• �str([object]) Return a string containing a nicely printable representation of an
object. For strings, this returns the string itself. The difference with repr(object)
is that str(object) does not always attempt to return a string that is acceptable
to eval(); its goal is to return a printable string. If no argument is given, returns
the empty string, ''.

Functions – built-ins

• sum(sequence[, start]) Sums start and the items of a sequence, from
left to right, and returns the total. start defaults to 0. The sequence's
items are normally numbers, and are not allowed to be strings. The
fast, correct way to concatenate sequence of strings is by calling
''.join(sequence). Note that sum(range(n), m) is equivalent to
reduce(operator.add, range(n), m) New in version 2.3.

Functions – built-ins

• tuple([sequence]) Return a tuple whose items are the same and in the
same order as sequence's items. sequence may be a sequence, a
container that supports iteration, or an iterator object. If sequence is
already a tuple, it is returned unchanged. For instance, tuple('abc')
returns ('a', 'b', 'c') and tuple([1, 2, 3]) returns (1, 2, 3). If no argument
is given, returns a new empty tuple, ().

• type(object) Return the type of an object. The return value is a type
object. The standard module types defines names for all built-in types
that don't already have built-in names. For instance

:>>> import types
>>> x = 'abc
'>>> if type(x) is str: print "It's a string”
...
It's a string
>>> def f(): pass
...
>>> if type(f) is types.FunctionType: print "It's a function”
...

It's a function

The isinstance() built-in function is recommended for testing the type of an
object.

	Introduction to python
	Introduction and Concepts
	Python Editors – Idle (1)
	Python Editors – Idle (2)
	Python Editors - Emacs
	Editors - and many more
	Before we start: remember “dir()” and “help()”
	Really remember “dir()” and “help()”
	Python Types
	Number Types
	Types: List 1
	Types: List 2
	Types: Tuple
	Types: Dictionary 1
	Types: Dictionary 2
	Types: String (1)
	Types: String (2)
	Types: String : Input/Conversion
	Files
	Types: Final note
	Conditions
	if/elif/else
	Loops: For 1
	Loops: For 2
	Loops: While/Else
	Blocks: Try/Except/Else
	Functions (1)
	Functions (2)
	Functions (3)
	Functions (4)
	Classes
	Modules
	Modules vs scripts
	Debugger - IDLE
	Debugger - Pydebug
	Appendix for session: �Introduction to python 1
	Functions – built-ins
	Functions – built-ins
	Functions – built-ins
	Functions – built-ins
	Functions – built-ins
	Functions – built-ins
	Functions – built-ins
	Functions – built-ins
	Functions – built-ins
	Functions – built-ins
	Functions – built-ins
	Functions – built-ins
	Functions – built-ins
	Functions – built-ins
	Functions – built-ins
	Functions – built-ins
	Functions – built-ins
	Functions – built-ins
	Functions – built-ins
	Functions – built-ins
	Functions – built-ins
	Functions – built-ins
	Functions – built-ins
	Functions – built-ins

